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ABSTRAC1’

Rcwisicm  c)f tlm l]l:~tl~el~l:ttit’:il  formalism of fluid dynamics slqqysts  that some physical
inccmsistmcies (infinite t imc c)f approaching cquilibli  a, and fully ddenninist  ic solut icms to

the Navim-Stokcx ccluaticms)  can k removed by relaxing the Lilxdlitz  c.onditicms,  i.e.,  the
bcmnclcclncss  of the deriva,tivcx,  in the cmsti  tutive (’quationso Physically sudl a moclifica-
t ion Can be intcvpmkcl  as an il]cc)r]>(~x.:~tioll  of an i]diui tesimal st tit ic fridicm in the con-
stitutivc  law. A modified version of the Navier-St(d;tw  equations is intrcducecl, disc. ussecl,

ancl illustrated by cxamplcx. It is clmn(mstxated  that all the nmv dFects  in the mocliflccl
model Clnerge  within vanisllingl  y slnall l]f?iglll~c)rllc)c)cls  of equilil)rium  st atm which are t he
cml y clcmlains where  the govcxming  ecluat  i(ms are dif~ertmt  fr(ml classical.

1 .  INTRODUCTION

One of the central l)roldmns  in fluid dynamics is to (:xplain how moti(m  whidl  is
dcwribccl  by fully clc?tcmninistic  gynwrning equati(ms  can be rand(ml. Inckcl,  Id us c.onsickr
cxpcmcmt  id growth c)f a vort ic.it y c.cmponent  w:

(J= woe~’, O<  A<CO

Ol]vicmsly  a solution with an infinitesimally dose  initial cmldition

J=wle~~,  til=wo+ E,& —)0

(1)

(2)

will rmmin  infinit  cximall y c.1( M! to t lle origil  lal one:
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Iu-q=d’ –+ Oatt<ooif  e-+0 (3)

during all bounded  tinm intcmds.

This mm.ns that random soluticms  m]~ result  cmly  from random initial conditions
when .5 in (2) is small,  but finite rather  than infinitesimal. in othm words, dassic.al fluid

dynamics can Cxplain  amplifid ions of random motions 1 ) y the mechanism of instability,

but it mnnc)t repmsmt  their origin using mathemat  id formalism.

Tlm remmt discmwy of dm.otic  mc)tions  in n(mline:ir dyliamics demonstrates that
the samc kind of problmm  exists in tile general  f(mnalisnl of Nlmvt(mian  mechanics when

motions descrilxd  by fully ckmninistic.  m(dds  appear to be random. A revision of this

formalism was presented  by Zak [1- 3], and here wt: will briefly discuss it.

Tl~c g(m?rning  equations of classical dynamics )nay lx? daivd either  from Lagrangian
fundims,  from variational prillc.iples,  or dime.tly fr(nn Newton’s laws of motion, ancl they
may be prmcmtcd  in various Cquivalmt  f(mms. How{werj  three is on(! mathematical restric-

tion cm all sllch f(mns: the diffcmmtial  equations dt:scril)ing a dynamical system

ii == Vi(x],  :rz, ”””, x,l )  ?=1,2,...,  ?1 (4)

must satisfy the Lipsdlitz  amditim, wllic.h  express(ts  that all tile derivatives

must lm Ixmndd.  This matlmnatical  restricti(m  guarantees tlw uniqueness of the solution

of (4), subject to fixd initial amditicms.

This condition allows one to describe the Newtonian dynamics within the matl~emat-

id framew(mk  of tlm classical theory of differential equations which guarantees its pm-
dic.t  ability. That, in t mm, loads to such dfec.ts M ilifinitc time of approaching an attractor,

infinite time for esc.apc  of a rqdler  if changes in initial cmdi tions are infinitesimal, ml-

tractability c)f two trajmlmies  which originally are “vay clm:”, but diverge expcmcmtidly,

C!tc.
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Hencc, there  aie a variety of phenomena whose explanations cannot be Lasecl  directly

upon rdassid  dynamics: in addition, they require some “words” abcmt a scale c)f olxwrW-
t ion, “very C1OSC”  trajectories, etc.,

Turning tc) the govmming equations of classical dynamics:

d 13L (9L (9R— . .  —  — —  .—
=  f3~j

i=~,p,...,fl, (6)
[lt diji 841 ‘

where  L is the L-angrangia. n, qi, ~1 are the genmdi  zecl c.omdimt~s al~(l v~lo~iti%  ~1~(1 R
is  the dissipaticm func.ticm, one should recall that the Stlllc’.tlllL’ c)f ~(~i,  -0 m ! tifl ) is Ilc)t
prescribed by Newton’s laws. Some  additional a.ssumpti(nls  are to be made in cmler  to
define it. The “natma.l’) assumption (which has never km challenged) is that these
fundions  mn lm cxpandd  in a Taylor series  with respect to equilibrium states: ji == O.

obviously, this mquims the existmce  of the derivative: ] *Z [< ~ at ii + 0.

A departure from that ccmdition  was proposed in [2], (SN the Appendix), where the
following dissipation function was intmduccd:

(7)

in which ~i WC positive cxmstallts, N is the munlxw of the fric.ti(m  f(mes  applied to the
points ?’1,  ~lld

k.~- < 1,]) >> 1,
p+2

(8)

while p is a largc odd number.

By sdeding  a large p, onc can make k c.hwe  to 1 so th:~t  (“7) is allllost  icl~l~ti~~l  to tll~

dassid  one (wlml k = 1.) evmywlmw , excluding a small licigjllxmlmod of the equilibrium
point  ~j = (), while at this lmint:

(9)



Hence,  the Lipsc.hitz  condition is vicdatd,  the frictio]~ force Fi == --~ grc)ws  sharply at the

equilibrium pc)int,  and then it gradually approaches its ~tdassiml))  value. This effect can

Ix interpreted as a matlmnatic.al representation of a jump frfm~ st atic to kinetic friction,
whcm the dissipation force does not vanish with tlm velocity,

~ It appmrs  that this “small “ difference  betwetw  fric.titm  forces at k = 1 ancl k < 1

leads to funclamcmt  al dm.nges  in Newtonian clynamic.s. In orclm  to demonstrate it, wc will
consickr  the rdationship  Imtweml  the total  mlergy E and the dissipation function 1?:

(lo)

I Within a small ncigldmrhcmd  of an ecluilibrium  state (wlwm the potential energy can be
sd mm),  the mmgy E and tllc dissipati(m  fllnc.tiol)  R have? tile order, respectively:

E-q:, k+” [it E ---+ o.

Hcnce, the asymptc)tic.  form of (10) can be l)resentrcl  as:

(11)

If A <0 and k < 1, tlh(?  equilibrimn state E z:= O is an attractor where the

Lipsc.hitz  mnclition (/ dE/dE  I a m at E –j O) is violatecl.  Such :i tcmninal [1] attrador is
approached by tl~c solution originatd at E == lJEo > 0, ill fll]it(t  time:

(13)

Obviously, this intqyd clivcngcs in the dassid case  k 2 1, where  i~ --+ m. The motion
dmc.ribc!cl  by (12) has a singular s(duti(nl  E a O and a regular s(duti(m:

E ==[ A E$]-~’2) -I- ;A(l – k)t](2’1 --~) (14)

In a finite time,  the motion can reach the equilibrium an(l switch tc) the singular soluticm\

[ E s O, and this switch is irreversiljle.
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The pmpmty  of the solution to the ecluation  x == –xl/3 (which is of the type c)f Eq. (12)),
is illustratcxl  by Fig. 1,a.

As is wdl known from dynamics of Ilc)llcc)llselwttive  systmns, dissipative forces can
destabilize the motion when tlwy fed the external  eliergy  into tllc system (the transmission
of ellmgy from laminar  tc) turbulent flow in fluid dyIJ amic.s,  or frtml rot at icms to osc.illat  ions

in the clynamics  of flc?xible  systmm ). In terms c)f (1 2), it w(mlcl  mean that A > 0, and the

equilibrium state E = O bcw.cmes  a terminal repelk?r[l].

If the initial condition is infinitely dose  to tl]is repeller, tht? transient scduticm  will
escape it during a finite  time pcwid  (Fig. 1),

I
A E;. dE a ~ ~j(]-kp)

to= ——— __— — —_—
,_.,o  AE(~A)  ‘- ( 1  -Ok)A = < “

while for a r(?gular repc?llm, the tire? would 1X? ildlnitt?o

Exprc?ssing  (12) in tmrms of the? vc?l(x:ity tit i = 1, cjl = v,

i) = Bvk, B = C.c)llst >0 ,

(15)

(16)

{ }

1/2

1) = + [B(1 – k)tp’”tz . (17)

As in tlm c.asc? of a tmmind attractor, h(m? tht? moti(m  is also irreversible: the time-
bad;wad  mc)ti(m obtain(!cl by formal time rmwrsal t + – t in (17) is imaginary, sinm p is

all cxlcl nulllbm (s(!(?  (8)).

But in addition to that, the terminal repellers possess evt:ll  more surpising  chaHtc-
tmistim: the scdution (1 ‘7) b(?comos  totally unpredic.taljlo. hlcl[x?cl, two cliffcnxmt mc)tions
ck?smikd  b y  the s o l u t i o n  (1 ‘7) art? possible f(m “dlnost  tllc! Sam(?’)  (IJO = -le + O ,  cm

‘t)~ = —E + (1 at t -+ ()) init ial  cxmditions. Assuming that pc)sitive  and negative clistur-
bane.es *C ocxur with equal probability 0.5, one al rives at the situation when instability

and non mliqucmc?ss  c)f th(? solution impart elements of stmhasticity  intc) the pcwtinstahility
ldavior.
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Thus, a terminal repeller represc?nts  a vanishingly short, but infinitely pc)wmful  “pulse

~
of unprdict  abilit y“ which is plunped into the system via t[?rnli nal dissipative forces.  Ob-
viously,  failure of the uniqueness of the sc)lution  1 lere  msdts  frmn the vidat  ion of the

Lipschitz condition at v == O.

As is known frcm dassid dynamics, coml~ination  of staljilizing and dc?stabilizing
dfeds  can lCM1 tc) chaos. In order to desc.rilx?  similar effm.ts  i 11 dynamics with terminal
dissipative fcmxx, let us slightly modify (16) assuming tlmt  B =: 130 cm wt.

Then stabilization and dmtahilizaticm  t?ffects  altc?rmt(:. Witl] the initial condition

v -+ O at t ~ O, tlw cxac.t,  solution to (16) c.cmsists  of both a regular solution:

I

[ 1130(1 – k) \i*lui  ‘]/]-k)
1)=+ —— ,< ? 1) # o,

w
(18)

ancl a singular solution v = O. During tilt: first period O < t < 7r/2u,  the? equilil~rimn

pc)int v = O is a terminal repeller. Therefon?,  wit}lin  this int~?l val, the motion can follow
onc of two possible trajcctmies (18) (each with proldility  1/2). cluring  the next peric)cl
7r/2w < t < 3n/2w,  the equilibrium point lmxmles a terminal attractor; the solution

appmadms  it at i! = n-w and it rc?mains motionl(!ss  until t > 3m/2u. After that  the.

terminal attractor converts into a terminal repeller, and the solution escapes again} etc.

It is important to notic.c  that mc.h time the syst(m  escapes the terminal repeller,  the

scdution splits intc) two symmet~ic  bx’anch(:s,  so that there ar(: 2“ possible scenarios of

oscillations with rmpcx:t  to tlm cc?ntc?r v == O, wllilc? mch  sc(mario  has the prc)lmbility

2 -’1 (n is the milnlm of cycles) , Hence,  the m)ti(m  (18) rmnnbh?s  chaotic oscillations

known from classical dynamics. It C.(nnbin(?s  rand(m  clmr:icteristics  with the attradion
to a centm. Howc?vm , in tllc?  classical case, tht? cl) aos is caus(cl  by a supcmmsitivity  to

the initial Conditions, while the miqueness  of the solution for fixed initial conditions is

guarantcd.  In cxmtrast  to that, the chaos in the osc.illati(ms  (1 S) is caused by the kilure
of the uniqueness of the soluti(m  at tilt? eqllililjrillm  points , aucl it has ii well-organizd

probabilistic structure. Since  tile time of al)l]roaching  the equilibrium pc)int v = O by the
solution (18) is finite, this t ypc? of chaos Call 1X? d] d t erlnil)a]  [1- 3] or nondet (mninist  ic.

Within the framc?work  of terminal dyn;imics, f(mnati(ms of new p:ittmms  of motion can

lJC mldcdood  as chains of tmlnind  at trac.tiolis  all d repulsions. As dcm)mstratd  ak’~,

during cac.h terminal r(?pulsion  the solution splits into two symmltric  branches, and the

motion can follow each of them with t?qual probabi lit y.

As shown in [2,3] such a sc.mario  can lm dcw.rilxd  by a systmn of cliffermtial  equa-
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tions with terminal equilibrium points. In c.c)lltraclistillctic)ll  to stodmstic  equations, here.

randomness results from the violat.  ion of the uniqumless  of t llc s( )lut ions, and thcm?fore,  the

differential operator itself  ,gpl(?rates  randcnn moticms, Becaus(:  of that, terminal dynamics

possessd  a wdl-organizd  prolmhilistic stmdure,  dc?scrild  l~y a Fokker-Plane.k type of

equation whcm  tw~?fficients  are uniquely ck?fined by fully det mm linistic  paramdt?rs  of the

original dynamical system [2,3]. At the swne timt:, it should bc stressed again that all

the new dfeds  of tcmnin al dymimics emerge  within vmishingly  small xleiglll~c)rllc)c)cls  of
cxluilibrium  st att?s which are the only domains whmt? tllc?  g(wcrl  ling equations am different

from classical.

Now we will formulate tllf? basic physical assumptions m ddying the pap?r.

Tlm dynamics of a fluid, on tht? macroscopic  lmx?l,  is dt~sc.~il~c?d’  by the Navi(?r-Stoktw
cxluatims which are based upon Newton>s laws. H owmw,  Lc?sidcs  that, some  additional

physid  assumptions ar(? ntx?d(?cl to introduce the dissipation function which d(:fines  the

rhmlogy  of the str(?ss-strain  rt?lationships  in a f lu id . on tht: macrc)sc.epic level, these

assumptions am bas(?cl upon tlw two laws of t ht?nmd  ynami cs, as w(?ll as upon the principles

of kinetics. Tllc  rmt of the “details” must IN foun(l from t:xperimmts. However, there is

another set  of assumptions (which am of a mathema  t id nat me)  usd in formulation c)f the
Navim-Stcd~(?s  equations. Thc most powt?rful  of th~?m is the requir~?ment  of diffc?rentiability

(as many times as mxw.ssary)  of all tll(? macrosc.(  qlic paramdms  with respect to time
and space coordinates. Such a rt?quirt?mtmt  is fully compatible with the principles of

the nwnwsmpic  lmml of d~?sc.ription. However,  another matlmmitiml  assumption dmut
the expandability of the (lissipati(m  function in a T:tyl(m seric?s  with r~?sped  to th(? state of
Equilibrium (which is w-ml  for deriving tilt? sin]plest  versi(m of the C.onstitutive  law) is not so
“innocent’ ) as it may 1(xJc  on first sight. Il~ded,  from t}l(?  pl~ysictil  viewpoint, it dimin:it(?s  .

tlm possiljility of static fricti(m  or plasticity effects which may (!xist within the infinitely
small ncighlmrhood  of (?quililjrium  stat~?s. The m(xlds  which d(w:.rilm  such t?fft~c.ts  are well

known [5], and tlwy am fully compatible with tlw l:iws of m~~llalli~s  WM1 tl~~~l~~f)clyllal:~i~s..

From the l~latl~~:ll~[~tic::tl  vit?wpoint,  tht? assumption 1 about the expandability y of a Taylcm
smitw of the dissipation fundi(m  enforces the Lipscl]itz  cxmcliti(m  at the equilibrium states,

and that, in turn, leads to infinite tim(?  of approaching tlmse st:itm.  The main objm.tive
c)f this paper is to show that by r(?laxing tlw Lipschitz  C.(nldition  in the mmstitutive  law of
viscous liquids one will 1 lavc? a Inuc.h m(mc?  rt?alistic stxmario  of bt>lmvior  of liquids in the

domains approaching to

2. CONSTITUTIVE

Following the idms

and departing fr(ml th(? equilil~rium  statms.

E Q U A T I O N S

dc?sc.rilx?d in the Illtrocl~~(:.ti(Jl~,  we will introduce and discuss lere
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the mni- Lipsd~itzi:in  vmsicm  of the dissipation function for a liquid in the same way as it
was done in (7).

As follows from extrenmm principles in imxwsihle  tllt~rl~loclyl~z~lllic s[4], the simplmt
form of the clissipaticm  functicm for an isotr{q]ic liquid which m;iy inccmpcmde non Lips-

dli t zian prcqmrt  im, is the following:

whcm D is a posit ive-ddinitx different idle fund iol) of the st?con  d invariant 12 of t 11(? rate-
of-strain, tcmsor  6:

e = clc?f v = ;(VV -1 @), (20)

i.e.,

(21)

I
!

(22)

I

~ while 1) j {UT tll~  CX)lll]X)llCllt  S (.)f t 11(’ Vt?l( )c.i ty V(?i’.toI”  V.

Thc dissipation function (19) d(?fil~es  tll(:  devi;  itoric stress  ttms(m:

1 pll— —-.
‘j~  = 2 1 2  ‘~k

(23)

Tl~e isotropic, part of the stress  t(?ns(m  can lx? preselkted  in the silnplest  f(mn (since V.V  =

o):

(24)



II

where  p is the prmsum.

Thming  back tc) Eq. (19) let us specify the dissipation function as fcdlowing:

a ‘--] ~,()pD = 4/L’ —
E*

(25)

wlmx’e  p’ ancl eO are positive Cmlstants  with the din]ensi(ms  of viscosity p and the rate-of-

strain e, respedivdy,  while k <1 is given by Eq. (8).

Then the deviatoric  stress  tc?nscw follows from Eqs. (23) and (’25):

(26)

Eq. (26) is diffmmt  from the Newtcmian  liquid only withili an infinitely small neigl~-

lmrhmd  of tlm cxplilil~lia statm where

1~ + o, ~.~.,&jk9~1k + O (27)

Otll{?rwise

(28)

as follows from (26) and (2 S), ~i’ = 211 where }L is tile c.lassie.al viscosity.

OnC can verify that the Lipschitz cxmditi(m  for the function  (26) at 12 + O is violated
sinm

(29)

Mathc?matid  cfmsequmcm  of this property (whidl  are simi]al to tl~me  desmibd  in the
Intrmludion)  will bc! discussed in the next scc.ti(m.
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The physical mmning  of the property (23) is dear: it desmilms  a limit case of a

viscoplastic  bocly whcm  tlw

Let US summarize llOW

domain of pla.sticit  y is vanishing y small, see Fig. 2.

all the? arguments for selecting  k based upon Eq. (8).

Firstly, k must L(? dose. to 1

Ik-11<1

to preserve classid x(?sults in domaim  which exclude only small Ilc?iglll>orllc)c)cls  around
cquilil>ria (sm Eq. (28)).

Stxm(lly,  k must be 1(?ss then 1

0<1:<1

to intrcducc  the plasticity effects  ar(mnd c?quililxia via the daxatifm  of the Lipschitz

condition (see Eq. (29)).

Thirdly, k must 1x? rcq]rm?nted  by a fraction with an odd nmm?ratcm  and an C)CIC1
dmomina.tor  in ordm to pmwrvc?  th(? stress-strain rc?lati(nwhips  in th(? form given in Fig.

2. Indcmcl,  in cas~? of an cvcm numvwtor,  tho left l~ranch  in Fig. 2 will be positive, while
in Case of an even clellc)lllill[ttol’,  it will lx: imaginary. Oln’iously both Cases arc physically
mmdist  ic.

HCnCC, adudly Eq. (8) minimims tht? [l(?gre(? (If arbitrariness to which the constant k

is ddinecl. It shoulcl  lx? notic.t?d  that similar moch?l  was cliscuss(d  l~y H. Zit?gler  [5] where

he introdumcl  a limit case of a viscxq]lastic  m)cld.

In case of a twc)-clilllcl~sioll:tl  flow where  the vtlocity  Cm be expmssccl  via the stream
function I/J:

( 3 0 )
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Eq. (26) KXKIS:

(31)

‘  ‘-k[(d:::.’)’+- (::--alklk’-’- 3* ’3 2 )u~~ =/l&

‘ ‘-’[(0:::.2)2+- (::-2)21 ”-’ J:.’
u“ = —/1 &

‘ ‘-’[(:%)2’ (::-:%)21%- (%-%)
u~’ = —/L&

In tlm simplest case of a t~vt)-clill)(:l~siol~:il  uniclirec.ti(md  flow:

t hc only mn-zmo  Compollmt c)f the stress  ttmsor is:

/ l–k ()alL k
UIZ = }LEO —

ill:’ ‘
p’ =  2}1

This case was analyzed in [2].

Eq. (31)-(36) will he exploited in our flwther  disc.ussi{ms.

3 .  GOVERNING EQUATIONS

Sulmtituting  the Constitutiw?  cxluati(ms  (26) into the mommtum  equations:

(p $+VVV) =–vp+~.o

11

I

(33)

(34)

(35)

(36)

(37)



ancl taking into amount  the ickmtity

v.(nA)=nv.A+A.  va (38)

holding for arbitrary tc?nsor  A and scalar c , one oht aim the non- Lipsc.hit zian version of
the Navier-Stokes equation:

( ) ~
~+vvv  =-- V1)+}I*[IZ2p ix v .(VV + #) +- (Vv -1- #). v (12+)] ( 3 9 )

Whcle

I

V.v = o (40)

Eq. (39) is diffm?nt from tli(? Navim-Stokes equati(m  only within  vanishingly small neigh-

borhoods  of equilibria whine

IZ + O, i.e. u –> O, .5 -+ O. (41)

0therwisf2

~~. & –~
12’ ml, v(12’ )&o,  E]-k&l

which XXXIUC.CS  Eq. (39) to its dassic.al form:

(42)

(43)



I In the particdar  case (35)-(36) c)f a t~’c)-clill~ellsic)l~al  uniclirediomd  flc)w,  Eqs. (39)-
(40) reduce to one equation:

which is cliffcmmt  from the dassicxil d i f fus ion  equati cm

( 4 5 )

only if
I

\

I 4. L A R G E - S C A L E  E F F E C T S

(46)

Ld us evaluate the rmige of moti(m  scales whcwe  the propcwcd  mc)ckl  describes special
effmts missecl  in the dassid  desc.ripti(m.

I

Turning to the cxmstitutivt? c?cluation  (19) ancl (!xpanding it in a Taylor sericx:

cmc can verify that the Newt tmian licluicl ch?sc.ribc?d by th (? Navi(?r-  St ekes equation corrc-
spcmcls  to tl~c?  cxisc whm only the first term in F,q.  (47) is la?pt.  That is why this simplmt

mcdel  is valid  cmly  for such vdocit  y gradients whid 1 am N?lat  ivdy small in cmnpwison  to
tllc)se  C)n the. nlolmllar  scale.

The smne cxmdusion  mm lN m:icle based  up(n) st atistic:il  m(dmnical  concepts whcm
the non- equilihrimn mmponent  of the Maxwc?ll  clistrilmtioll  function is expanckcl  in a

Taylcm smies.

Hc)wmwr,  them is anoth~?r  pwsibility  in mprcwmting  Eel. (47), for instance:

I
It== (L1(12)-I  + (L2(12)--2 + . . . (!tc. (48)

13



It lias never been exploited bemuse  clf the matlmnaticd  “illcollvelliellce”
the singularity y at cquilihria where  12 + O.

The proposed  mcdd  def ined by Eq.  (25) bdongs to the Stilll~  type as
although it has a w(?aker  singularity:

R-+0, but ~~-+mat  Jz-40

Causecl  by

Eq. (48),

(49)

i.e., at equilibria the Lipschitz condition is violatecl.

It should be expdml that contrary to the cast (47), the cmstitutive  laws of the type.
(48), including tlw proposal model, are taking into acx:.cmlt  tlw large scale mc)tion  effects.
Indcd, as pc)intd  out al.mw?, the propost?cl  ndc?l  descrilx?s  nmv Cfl’c?c.ts  when the? vc?lmity

gradients art? small in the smsc?  that

Hcm co is the physical Constant  of the liquid illtroducxxl  by the Constitutive  equation

(25). Since its clilllt:llsic,lli~lity  is:

(51)

one can int reduce the time scale Z’~ of the mot i(ms ck?scril )(?d by the pmposd  model.

In(lcd,  based upon Eqs. (50) and (51), (me obtains:

whence

Tlm lc?ngth SC.ZJL? L can be f(mnd from the mnditiml:
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The evaluations (53) and (54) demonstrate that th(’ prf)pfm?d  l~]odd dmcrilxx  l:irge SCAC

motion  effects, i.e., motions close  to equilibria wher(!  the v(?lt)cit,im  and their gradients are

datively small.

Turning to the governing equations (39), cme can simplify them by ignoring the c.on-

vcdion  terms of the acmkmdion  whidl  are small ill compaxisoli  to similar viscous terms

in the. domain of large scale motions (53), (54):

(N
P%  =

[.
– ~y + /i* Izw ~ .(VV + VV7’)  + (VV + ~V7’). V (Iz%)

1
(55)

The exprcwsi(m  f(m the me.rgy  dissipati(m:

&=_$&+K!J+”l,,l) (56)

dom not diffm much from the? classical cast:  (k = 1), which m(?~ins  that it dmrmses  with

the grows  of the kmgth Scd(?:

(57)

Howmvm, the dissipati(m  f(mm V.O, i.e., the rontlil~uti(m of the dissipati(m  stressm
to the mommtmn  equati(m, difl’m significantly from the classical Case k = 1: they grow

sharply with t llC dexm?ase  of the vdocit  y gradients, lx?coming mllmundc?d  at the equilill-

ximn. As will bC shown below, the last prcqx:rty  is r(!spmsilk for a finite  time of approacl~-
ing equilibria. From a physid viewpoint this means  that at t:quilibria  the dissipation is
mrrid  out, by static. friction.

15



Thus, the modificmticm of the c.onstitutive law which I&mm the Lipschitz  ccmdition

at equilibria by introducing a vanishin.gly small static  friction, eliminates one of the least

‘(damaging’) inmnsistenq in fluid dynamics (as wt!ll as in classical dynamics): tlmnwt  i-

cally infinite timt?  of approaching e.quilihria. Hc)wme.r,  as a “side-effect”, it eliminates a

more “damaging” inmnsistenlc.y: th(? Omnlrrellc.e  of stc)ch:tstic  mt)ticms  in flows which are

desmibecl  by fully ddmminist  ic llyclrc)clyl~all~ical  m( dels.  As will he shown  below, the rel-
axation  c)f the Lipschitz condition at equilibria in c(nnbination with instability may cause
the failme  of the uniqucnmss  of solution to I!lqs.  (39) and (40), and that can be repre%td
by additional stochastic compont?nts  in the. scdutioll. The inst[ibility  mentioned above is
c)f the same type? as in Eq, (16): it is a supersensitivity to infhtitmimal  dlanges of initial

conditicm.  At first sight it s(?ems  unlikely that at equilibria WIICIC the actual viscosity is
very large  (strictly spc?aking,  it is a static friction rather  than viscosity), any instability can

occur  at all. Howevm, as wc?ll-known from the theory of l)ydxxxlynzimic  stability, viscc)sity
Can be a destabilizing factor, for instance, in parallel flows whmw  the mnditicms  (41) are
wdl satisfied).

5. B E H A V I O R  A R O U N D  E Q U I L I B R I A

In this section we will amdyz(? th(? lxhavior of a ll(Jl)-Lil~s(:llitzial~  liquid within van-
ishingly small llt?igllljorll(~()(ls  of (?cluililjrium  st ates whcm? t ht? c(mdit  ion (4 1 ) holds,

our analysis will lm Lased  upon the energy  ha] ancx? for thr liquid in a volume v with
the boundary s which for any isotmq>ic  liquid can lx? prc!smttd in tlm f(dhnving form [1]:

82
/ “--’’+[++[+-’5  -(vo)l’’’’--lo’’%”v%,2

(58)

Confining our disc.  ussi(m to a two-clilll(?llsioll:tl”  flow and utilizing th(? expressions givcm
Ly Eqs. (30)-(34), ont? mwritm Eq. (59) ill terms of the str(?am  fllncti(m t~~:
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-J{$+W)2+(%)21}{% )2T3’’’)}’S’S ‘5 ’ )

Wllcrc

/l* l–kV* == - - -  == ~&. ( 6 0 )
p

are angl(?s lx?t we(?n tll(? unit norm:il  n and the c.oordinat~?  axes
Vtwtor  v , respdively.  1 t is underst(d  that tlwse angles arc

known from the boundary mnditi(ms.

Ld US WSlllll(: that

v.n = O, i.(?., cos~ = O, lnlt (Vcf).n # o ( 6 1 )

which mmns  th:it the extmml fhw dfx?s not pem?tl  ate the volmnc boundary S, and there-
f(nw, the exdmnge  of mmgy lx~twmn the v(hne v and the ext(mml flow is carried  out by

the viscous tam (VC7 ).

Tllcl~ tl~e last terlll ill Eq. (59) vanish(:s.

SUpposc  that

Then the Eq. (59:

where

17
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I

I

Wc will analym Eel. (52) for two c..ast?s  whm

AZ– A1=–-B2<0

AZ-- A1=BZ>>O

In the CWC (67) tiSSUlll(? that

(65)

(66)

(67)

(68)

which Corresponds tc) the init  id kinetic emngy of tile flow:

18
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Then Eq. (63) (under the condition (67)) d(wc.ribm the damping  of the fluicl mc)tion due

I tc) viscous  stress. It has rcgukir solution

and singukw solution

solution.

In a finite  tinm

(I]);p
fo= ,_~ -—<mifk<l

&o vB2(l –  k)

(71)

(72)

(73)

the regular solution (71 ) approadlc?s  t?cluilil~rimn,  it!. tht? singul;ir  solution (72). This time

depends upon the Constants k and co which can l~e ftmnd fr(ml expmbimt?dd  mmsmmmnts
of to.

It should be stress(?d  that in the dassid case, (k = 1), tht?  soluti~m  to Eq.  (63)
approaches the equilihriu.m  (72) asympt ot ic.ally,  i.e. to + cm. That is why the paramdm
k found from Eq. (73) must lJC less than one.

In the Case (m) assullle that

i.e., the liquid is in c?quilihrimll,

?/)](t  == o) = ?/); -+ o, (74)

J?(, = o

19
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Ulidcx  the condition

initial rendition (74),

(68), this equilibrium is unstable. Inded,  Eq. (68) subject tc)

has thc!form:

+) = +[V*IY(l -- 1+]* (76)

The solution (76) possesses amma:ltaldc?  proprty: it dt?l)arts  the equilibrium so fast
that tllevcloCity  l~CCollles  fillit(: cleslJite  vallisltillgly  slllall [listllrlj[~llt:es  (74) (cmnparewith
the c.lassicd  case (3)). At tlm same time, with equal probability 1/2, this solution Can
bcwcnne  positive or ncgativt?  which means that tllc?  solution att aim stc)c.lmstic  prcq~ertim.

It shcmld  be mnphasizd  that this stochasticit y N?su] ts from the? rc?laxaticm  of the Lipschitz
ccmclit  icm at equilibria, ancl that, in turn, l~?ads  to failure of the? uniqueness of the sdut ion.
Tlms, formal illcc)rl]c)riitic)l~  of an infinit(?simd  static fricti(m  in th(? constitutive  equation of
licluicl allows one to ex]~lain  the statistical nature c)f turl]dencc’: in d(maim  of supcmritid

Reynolds munkm, idinitcsimal  random components of tlm s(dution  caused  by the failure
c)f the Lipsc.hit  z condition, are amplifi(?d  by the mechanism of instability and lead to fully

clcwel(qxd  stcdlastic.  moti(ms.

6. A T T R A C T I O N  TO E Q U I L I B R I U M  A F T E R  SLJDDEN M O V E  O F

B O U N D A R I E S

In the prcwious  scxticm w(3 have cliscussed  two fundmncmt  ally new properties c)f the
mm- Lipschitzian m)clt?l  of liquicl:  a finite  timt? of approaching quilibria, ancl occurrence

c)f stc)dmstic.  solutions to tht? m(difii?d Navier-Stol<(:s  equations. Both of thcxe effects  are

in full agm?mcmt with cxpc?rim(?nts.

ID this sc:cti(m  WC? will illustrate? tht: m(difiecl nl(xld  by (?xample  of ~n unsteacly  unicli-

rdicmd  flow indud by a suddm  simult  an(xms move  of lx )t h k nvrr and upper bound arit?s.

Utilizing th(? c(mstitlltivc  law (36), (nl(? can write the following gpvfnming  Ccpmtion:

subj~ct  to the following  lxnuldmy  and initial c(mditionsj r~?spcwtivdy:

U(o, t) = Ifo, ;.(0)=:O O<t<-t(x
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I@,o)=o, O<y<p (79)

Here u is tk flow velocity  pardld to the hcmizcmtal  axis x, y is the axis ncmmd tc) the
flow, 24 is the distance betwecm  the lower  and upp(?r  Ixmnd:iries, and v* is the mcdifid

viscmsity cxpressc?d  by Eel. (60), uO is the initial velf~c.ity  of the boundaries, and k is
expressed byEq. (8).

Tllesccol~cll~c)~lllcltiry  c.onditionin  (77) isforlll~ll:~t(?clfc)r  tile middle linebetwem  the

boundaries in virtue of tlm symmetry of the problmn.

For k = 1 cm? arriw?s  at tile classical [liff~~siol~(lq~latiol~:”

(80)

(81)

O<y  <l?, O<t<:+m (82)

wlmw v is tllc kinematic viscosity.

obviously, this solution is valid for Eq. (77) in the d{m:iins  where the condition (28)
is satisfied, i.e.,  wher{?

As follows from the soluti(m  (81), th(? ixnlditi(m (83) holds if

o<i <i*,
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Turning to Eq. (77), let us introduce a ]lew val’iable  L:

‘u == &oii

whose (Iilllellsic)xl:ility  is :

[ii] = L  sinr.f?  [~0] ,= 2’-1

Tl~cmforc,

[%1  =  [(%)’-]] ‘1

(85)

(86)

( s 7 )

(8s)

(s9)

Since we are looking for the s(duti(m to (89) in the domain t > -t*, the lmundary and
initial Ccmditiom  now are f(mnulated as:

ti, (o, : (90)

(91)

Here.
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I “.

‘i-iO = &o ‘U(), ii* = co ‘U* (92)

where  u* is velocity at t := ix obtained from the dassiml  solutim  (81) which is valid for

O<i <-t. (93)

Seeking the solutitm to Eq. (89) in the dcmlaill t > t. for ~’ < 1 (see Eq. (8)) in the

form

U;(uy + )iii~ == o, (’u; = duJdlJ)

tll(~ general solution to Eq. (96) has the f(mn:

where  Cl ancl Cz are arbitrary c.(nlst  ants.

As follows from (97), y is {i cfmtinu(ms fm~di(nl  of k, so that

y(k)  ~ y(l) if k ~ 1, (see Eq. (8))

Hence,  Eq. (97) can be [il~l>roxil~l~tt~~[l  by the classical s(dutim:

23
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(96)

(97)
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(99)

and therefore,

4
+@

x
1

‘n’ ’11= [L2U-2’”92

.  271+1”
1!2 = —–-

211 + 1
Sln —~t (loo)~

11=0

?{\ ’l)= [c,,- (l-k )l/A,ti]*’, c,,==  c.(nlst (101)

Howcwcr,  since Eq. (95) is (?sstmtidly  nonlinem, tl~(?  sulxqmsitic)n  principle is not appli-
c.ablc hmw.  In order to circ.umvc?nt  this difficulty, w7(: will c.onfinf’ mwst?lvc?s  to the soluticm

for sufficiently largy? time.

t>t. (Seeml,  (s5)) (102)

where  the lowest  mode.  cxmrespondillg  to

7r2AO= -@

dominatx?s  ovm tlm otllmx.

Thcm thesolution  to Eq. (S9) reduces to:

(103)

(104)

The constant Co can be f(nmd by matching the solutions (81 ) and (104) at t = tx, y = /:



.

while

( )ii. = ilo 1 – ~e–i:%u  “ ‘y
7r ‘]1] ’27

Finally, the solution to Eq. (77) is:

( 1 0 6 )

while for O < i ~ t* the solution can l~e prmm~tml  in the c-.lassicxil form (81),

Although Eq. (107) rqresmts  an apploxinlat(  soluti(m  to Eq. (77), it still presmvcw
its fundamc?ntal  Ilrfqx?rty:  the finite  time to of app]  (mc-.hing  tll(? Cquilihrium:

4t2 Tz(l -k)”
t*<<to=; +—-— 4!2c0

(1 – kpi%~e
< -}02 (10s)

As could be expm.t(?d,  this time dt?pexlds  upon two nc?w pllysir.al  constants of the. liquid:

k and &o.

7 .  SUDDEN START FROM REST

Continuing the?  analysis of the propos~?d  mode]  of a fluid, in this section WC> will pose  “

the following problmn: find th(? v~?locit  y fidd and tll~? drag f(mc.es  induced by a particle of

a vanishingly small size suddml  y start ing fr(nn rest. This prolhn is very important in
a mriet  y of physical contexts, such as the settling of sedimmt in a liquid, and the fall of

mist dmplcts  in air. Ncwert  hdess, fr(m~ ~ f(mnal ma thereat i cal vicnvpoint,  for a Newtonian

liquid such a proldcm does not make much sense: all thr llyclrc)clyllalllical  e.ffmts  vanish
when the size of tile particle buxnnes idinit(ximal.

Indcx?d,  invoking the St(d{t?s  s(duti(m for a moving sphere,

(109)

(110)
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one  obtains:

I/~-iO, F-+ Oif a-+0 (111)

where  a is the radius  of the sphere.

But if this sphere  mcnms  in an md)ouncled  volume, any finite sim is %mishingly  small”.

That is why the smallness cjf tht?  size? of a particle is actually und~?rstood  as the smallness
of the Reyncdds  nuder li’e.  However, cz-qm?ssing  t 1 M drag f[mx: in (11 O) via the Reynolds
nuder, one arrives at a singularity y for the drag;  c.odlicient:

Thus, the classical approach to the prold(?m  posed above t;ives only qualitative rather  that

quantitative results.

We will start with the pl:inc flow in the domain of small vt:locity  gradients where

(113)

Thcmfom,  tht? mommtum  cxluati(ms  for this case  can Ix? rdur.wl  to tilt? form (55), i.e.,

(114)

in whid al 1, CJ l z, and a22 are expressed ljy Eqs.  (32),  (33) :u1(l (34), ~w~(?~tiv~k.

WC will show that this Cquaticm  has a class of solutions which is fundamentally diff(?rcmt

from those  in the? dassid  mm?. For this plul~ose,  let us see{1 the solution in tlw following

f(”)lm:

(115)

Sul)stituting (115) into Eq. (1 14), (m[~ ol~tains:
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1 2k—— _—
‘=l–k ’7 ’L=

‘ = *(1 – k)~~~(k--- 1)%*
l–k’n

The two signs for o can be expc?ctd  if one rc?ds that, as folhnvs from Eq. (8):

2n --1
k=—–

271 + 1

where  n is the me of the naturtil  mmhers

?2 = 1,2, . . . t?tc.

(116)

(117)

(118)

1 2n + 1—  :=——-
l - - k 2 ’

(119)

and the. power 1 /(1 — k ) indudwi tile square root ol~eratitn~,  (Tl~e c?xprt?ssion  in the. square
brdds  in (116) is pfwitivc for k given by Eq. (117)).

The solution (1 15) in terms of vt?l(m.ities  c.:in b{: pr~xmttd in the f(mn:

hc!rc

(120)

(121)

while the physical amst:int eO is introdua?d by th(! cxmstitutivt  cquaticm (25).

One Can vmify that the expressions in tll(? first lnackds  in Eq. (S7) have the dimcmsion
of vdmity,  and the cxprmsions  in the smxmd brackds  ar(! dilncmsi(mlcxs.

Substituting (87) into tll(: m(mentum  (xpmtiolls:

27



.

(7]] =0, uz~ = O, Vp = O, i.e., p == umst “ (123)

This means  that the vc?locit  y field represents a slmir flow.

We will start with the f(mnal analysis of the solution (120), First it should be noticml
that

(124)

M(? alsc) the solutions to Eq. (1 14), or Eq. (122), and thmeforc, Eqs. (120) mpxescmt
particular s(duti(ms to (122) subj(?ct  to the initial  C,(mditions:

v] = o, v~ = 0, at i=o (125)

Howcwm, in additi(m to that, Eqs. (122) hav(? a singlllar  soluti(m  for the same initial
conditions (125):

v] = o, 2)2 = o (126)

whidl  is not indudd in th~?  family of tht? soluti(ms  ( 124). obviously” such a l~cjl~-~u~icl~lc?l~ess

of solution is a result of violation of the Lipsc.llitz  conditif)ll  at tile (equilibrium. As in cases
analyzed in the previous smti(ms  (st?~? Eq. (17) an(l (71 )), tile solutic)l~  (126) is unstable:

I infinitesimal initial vdociti(?s

(127)



*

transfer it into one of th(? solutions (120) which will rapidly mcapc  from the equilibrium.
It is important tc) ~?mphasize  that the signs of the solutions (1’20) are ddinecl by the signs
of the init id conditions (127) which are random. Actually this is the origin of stochstisity
of the solutions to the Navier-Stolws  equatiom  modified to tile form (39).

Howc?vm,  one should rcxdl that the solut  icm (120) is va.li d only for those domailw
where  the ccmcliticm  (2S) is still true, i.c?.,  when

(128)

in whid~ CO is ddim?cl by Eq. (25).

As fdbws fr(nn Eq. (120):

(130)

‘“’=(’(37= (%)]-’ = “)]’St (131)

For this domain onc~  has to al)ply the original vc?rsim  of the m(nnentmn  equations (39)
whidl  inducle the convective cxm~p(ments  of the acc(:lerati(m  (lj(~ing dr(q>ped  in Eq. (144)).

Ld us now mmamtrate (m some?  physical ef]”ects  desc.ril.xxl  by the s(dution  (120).

Ccmsidm  a rigid particle at rt?st. TheIl  it must IM that:



1 . .
I

This condition Cm be satisfied if one? ccnnbines  the positive an~l the negative branches  of
the solution (120) as following:

v] = v; + v:, 1)2 = 1); + 1); (133)

Wllcm!

, (0 -
othc?rwisc

(134)

(135)

Thus, the soluti(m  ( 1 3 4 ) - ( 1 3 7 )  dtxmilxw  tll(~ flow axcmncl  a rigicl paytid[? of the radius
IS* = r. at r(?st.  But kwfore clismssing  the causr of t h i s  fl(nv, lt?t us find tllc:  form!  of
interaction lx?twmn the flow and the partideo

Ol~viously,  this form can lx? f(mnd as:

I
21r

Ff = OIZ  IS*clf2,  i.e., (138)
o

Ff = 47rr*p1)Eo
(%” w’

(139)

This equation is valid  (rely until the c.c)l~cliti(nl (128) is satisfid,  i.e. (with reference

to Eq. (131)) until
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Let us assume  that some extc?rmd  force? F is fipplic?cl to tll(!  particle at rest.  In ccm-
tradistindion  to the da.ssid  case, the flow starts lnoving;,  filxt raising the reaction fcmw

(139), and only after that the particle starts moving. This situation resembles the ldlav-
ior of a rigid body on a rough suxfam which can start mtn’ing only after the applied force
Cxmds the maximum static friction.

The maximum force due to idinitt?simal  static fric.ti(m  of the liquid is evaluated l~y
Eq. (140). It d~ll~ll(k  llpC)ll  e ~ which is the physical constant characterizing this liquid.

The tim(?-delay for the? motion of tl]e partich?  is f{mn~l  flom the? c{mcliti(m  (131)

,>

whcm v is given hy Eq. (131).

As fokws from Eq. (141), this delay depends upm k Ivllidl  is another physid

constant dmradmizing  the liquid.

For

t > At, ()] F > fi>,,,  ax, (142) “

the? particle starts m(wing, and on(? has to apply t 11(? original versi(m  of the m(nnentum
equations (39) which in this d(nnain will mine.idt? with th~: Navim-Stdws  equations. This
mc?ans that in t hc? domain (142) t lle v(?loc.i  t y field :uld the drag form Cm l)c found from

the Stda?s  formulas (109) and (112) .

8. P H E N O M E N O L O G I C A L  A P P R O A C H

As emphasizc?d  in the prcvio~w  scc.ti(ms, b o t h  (xmstants  k and &O (S~t? Eqs. (8) and

(26)) represent adclitiomd  physid  pr(qmrties  of liquids, and thm(?f(we,  they must be found
from exp[?rimmlts. Howt?ver,  in this section w(? will find both k and CO based upon plM?-

llc)lllellc~logic:al  c(mccpts. For that purpose l(?t us cxnnpm  the s(duti(ms  to Eqs. (77) and

(80) for
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(143)

The solution to Eq. (77) c?xpre.ssd  by Eq. (107) apprcmch(:s  tile (?quililwium  at t = to

wlmw to is clt?find hy Eq . (108), The scduticm  to Eq. (SO) {!Xpr(?SSd by Eq. (81),
tllc?oretidly  never approadms  the equilibrium; however , in finite  time it approaches a
domain of insensitivity wht?re the velocity uoo is so small that it cannot be detected by

scmsors.  Hence,  the? actual time? i~ c)f approaching tilt? equilibri~un  by the solution (81) can
be found as:

whcm

<=::<] (145)

in which uoo is the valm? of the smdl~?st  d(?t(:dablc v(?lc)c.ity,  and

‘lL. = ‘U tit t = t.

Bawd ulmn up-t ()-(l:it(?  l(?vc:l  of measum?lnt?nt  t (whniclues,

(146)

( ~ 0.01. (147)

Rmalling  that the solutions (S1 ) and (107) tire difftmmt  only within a small neighborhood
of the Cquililmimu,  lt?t m fincl ‘t(?quivalent,” Valllc?s of k = k* and EO ==  Et from the Condition
that the time to of approaching the equililjrimn by the s(duti(m  (107), and the time t,~ of

approaching  the domain c)f insensitivity are the same.  Eqll:itillg i. ancl tj from Eqs.  (108),
ancl (144), re?spcxtively,  {me arrives at a l]llc~llc)lllellolc)gi~:al relationship between k* and &~:

—



The scconcl  rdationship  betwecm  these paranwters can be dt?rivecl  from the following

I)llexlolllellological  c.cmcept. Turning to the constitutive law (26), one has to provide the
property that this law is sufficiently dose to the linear  cmc for large  velocity gradients
(which, however , are smaller than the molt?dar  vt ‘Iocit  y graclimts  ). Since

vdocit y gradients are of the orclcw of 1/~ wh(?re  7 is the Maxwell rc?laxation

write:

/,  \k–1

the molecdar

time, one CaII

(149)

This condition guarantees that the difference between the mnstitutive  law (26) mcl the
linear law are within the bcmncls c)f accuracy of the velocity m(!asuxements  for the entire

domain where  the equations for a Newtonian liquicl are applicable.

As follows from Eq. (149):

(150)

Eels. (148) ancl (150) express the l>l~(?llc)l~lel~olc)gic[il  versions of the physical parameters k
and &O via the physical c.onst  ant ‘r and the accuracy of Illc?aslll(’xllellts  (. In contrast to k

and .50, the Ccmst  ants k* and e; art? l~rc)l>lt?lll-(l(?l~ cllcl~;llt. Indeecl,  Eq. (148) was clmivecl
from the solution to a particular problem cliscussfcl  in tile section 6, and that is wily it

Contains  the repr(?sentativc  l[?ngth  4. Howc?vm,  d(:spite  this limitation, Eqs. (148) and
(150) provide a goocl  c?valuation  f,f the orclm  f,f these  parametms.

Eqs. (148)  and (1 50) scdvecl  for the water at 200C Ix?comc:

~ = 3109
3111’

e. = 2.66.10 –5
SCC

Nc)w WC! CM] mdllate th! ll:irallldm%  (], ~, ?’0 , ~,,,~X allCl At

mcticm (see Eqs. (121),( 131), (140) ancl (141), respectively:
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(152)

introclud  in the previous



(153)

9. APPLICATION TO ACOUSTICS

So far we havt? cxmsidcxd  only inc.ompressiblc  fluids, Howcwer , all the nlodifi;ations
c)f the constitutive  law mn Ijc :ipplied tc) gases  too. Indcwcl,  turning to Eq. (25), cme can
write [5]:

pn = 2/1’
($)’-]+ (’”+ i“’’)( :-)’-]

whcnw p“ is the smcmcl viscmity. Then, inste?ad  of Eel, (25) cmc c)btains:

Uj~ =  2/1’
(5k-’&jk+  [“’’(  2)’-”11JJ”-’’IJJ”

(154)

(155)

1] == &il,

is the first invariant c)f tho rat C+c)f-st  rain tculsor,  and fijk is th(?

The. momcmtmn ancl mass mmservatioll  actuations instt!acl

fcdlc)wing fcmn,  mspcx%iw?ly:

(156)

Kr(meck?r’s delta synhcd.

of (3!3),  ancl (40), take the

1

‘(~+v~v) =-~’’+’” (%)k-’[’-v+@)l
~v7’w3k-]}+@’+i’’’’K]~~v+v+9k+9k-’  ‘157)

(15s)
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For a ol~e-clix~lellsiollal  ccm~pressib]e  viscous fiow, th~, normal strms is given by the following
Expression:

‘~z=-’)+ ($’’’’)’’’’(~)”(~)” “59)
while the nlcmentum  and mass mmmwtion equations describing acoustic waves reduce

to:

in whid]

‘i= (:’’’’+ ’’’)&’-k

(160)

(161)

(162)

and po is the unperturbed value of the density.

After t?limination of the pressure p, on(! arrives  at the govc?ming equation for acoustic
waves  :

Usually the last tt?rm describing viscous effects is igmm?d  sillc.e  it is much smaller than
the dastic term. However, in our case the viscous term Cm lx? as sizable as the elastic

tcmn if the velocity gradients am small, i.e., if

In orcler  to simplify Eq. (163) let m introduce. a n(.w variable ~ instead c~f i:
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Thcm Eq. (163) XC!dll~C!S  to:

(166)

Eq.  (166) is identic.d to Eq. (77) if the
mspedively.

Let  us find an approximate sfdutitm  to Eq. (166) suhj(x-.t  to the fdlcnving initial
condition:

U(O, T) = $9(T), -- m < z < +- cm

%dcing the scdution in the form:

and substituting (168) int,c) (166) (me obtains:

.fA = [w 1’

(167)

(168)

(169)

Tllesc equations am similay to Eqs. (96), and therf?f(me,  their solutions” (97) Cm be simpli-

fied to the al>l>rc)xil:latiolls  (99) which led to th(? following”  f(mn]:

Then the functions UA can be found fr(nn tile f(dlcnving equations:

(170)

(171)



whence

.

Substituting (170) and (172) into (168), om arrives  at a ~mwier integral:

p(r) = ! u; e ‘ATdA,

1——.
‘;  =  21-r /

Y’(t) ~- ‘Ar d(

(172)

(173)

(174)

(175)

Substituting (175) into Eq. (168) one obtains the solution in the following int(?grd  form:

Ld 11S aSSllllle  that

u(O, ~) = yJ(7) =: uo sinw7-

Thcm

(177)

(178)

and> as follows from Eq. (1 76)
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(179)

Eq. (179) clescribcx a travellil~g acoustic wave gen(?rated  by a sinusoidal source  of sound

lomtcd  at x = O. The wave propagates with the dassicd  acoustic spmcl C2 = dp/dp, but

the amplitude of this wave gradually decreases with incr(?ast? of the clist  ante x from the
source.

Eventually, at the distance

?I’-kk$l-k) ( 1  –  k)d ILOW ‘-k_—-— .—
‘ z ‘2 4(:– k)a’d  ‘- ( )

-—
l/~)  2 c& (J

(180)

the sound vanishcx lx?ing absorbed due? to the viscosity.

A S follows from Eq. (180), the critical distmlm 1 depends upon two new physi cd

Const ants: k and CO. As can be expected,  this
viscosity v ad the frequfmcy  u.

It should lm recalld  that in the classical case
of (1 79), would lxx

distance decrcasc?s  with the increase  of

tile soluti(m  to the same problem, imteacl

x~ = ~. f;–a2w2x sil~~(~ — —) (181)
c

This meam  that an amustic  wave is nev(?I fully absorlx?d;  tllf!  distance over  which the
source of scmncl  Can he dctectecl,  is i]lfillit(’ly  largy:. Eq, (180) gives a correcticm  to this
idealized result stating that this distance is finite.

10.  APPLICATION TO ELASTIC BODIES

Effects, silnilar  to those  d(?scrilx?cl  in viscous f] uids, (xxmr ill t?lastic  bodies if dissipa-

tion procmse.s  are. taken into acmmt. Indeed,  in this case the total stress tensor  can be
mmbined  from tll~? elastic and viscous c.ompommts:

O= CTC+UU, (182)

3s
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I
while usually

UC >> u,,

However, in domains dose  to equilibria, the elastic  stresses vanish, and

(183)

But in these domains the. viscous stress can be represcmtcd  by Eq. (26), and therefore,
the gcwcnming  equations take  the form (55). This mcwns that all the dfc?c.ts  described

a.bovc  including finite  tinle of approaching txluilibxia,  non-uni qumms  of solutions starting
from equilibria, as well as finite  clistancx?  of al~soxpti(m  c)f an acmlstic wave, occur in elastic
bodies in the dcmmins  Chm to (?quililjria.

11. DISCUSSION AND CONCLUSION

Plasticity dfc?c.ts  are wt?ll-l~rc)llc)llllc.ecl  ill heavy viscous liquids sudl as lubricatcns  and

dyes, but they have never  bem st died in c.lassie.al Nc?wtoni  an fluids  like water, cm air,
presmnal~ly  bcxaus(?  they w(?re  (?xpc?ctecl  to he vanisl]ingly  small. (jur analysis demonstrates
that althcmgh the quantitative cx)ntribution  of these.  effects is slnzi 11 inclewcl,  qualitatively

cwcm infinitmimd  static fridi(m  leads to two new funckmwntd  properties which are: the

thccmtically  finitt? t imc?s  of approaching  equilibria, ancl the 1) on-uniqueness of sdut ions
which start at equilibria.

Tile first property  can be associ[itecl  witl~ the l]araclox  of irrmwrsibility  - one of the

most fundammt  al and yd not fully underst( ml pr( )blexns  in physicx.  Inded, the concept
C)f vise.cwity can be dc?rivd, on the micrt)sccq)i~  level of clesc.ript  i( nl, frcml  the fully xeversibk

equations of Hamilt  oni an d ymunim. This mmns tl)at the irr(wcrsil~le  processes in viscous

flc)ws  are cmnpl(?tdy cxnnp(wt?d  c)f rf?versil)l(:  events. one of the m(xst  convincing and wt?ll
acxxptecl  t?xplanat  ions of this I )arack)x  is that the dmllge fronl al] orcl(?red  arrang(?ment  to

a cliscmclerecl arrangement on the micmmxq]ic  level as a sfnwcx? of irrmmrsibility  is much

more prc)b:dde  than a change in the opp[)sitc direction.

In other worcls,  any macrcmwpic.  system, in principle, cwl return  to its initial state

passing through all of its previous states; howevc?r, the probal)ility  of such m event is
so small (but not zerc)!  ), that the peri(d  of time cluring which this event  Can occur  is

extremely large  in c.omp:uiscm  to the time scale of the macmwcwpic  moticms. Hc)wevt?r,  the
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Navier-Stokes equations, or their simplified vemion  - the diffusion equation - CICJ not have

my time sale: the time of approaching an equilihium is mlmunded,  ancl therefore, these
equations exclude any reversible solutions even if t -+ m. The only logical way out of this

situation is to introduc.c?  a tinmscale  into the Navi(r-Stokt?s  eq~lations  so that the time of

approaching an equilihrinm will be finite. 11’hen cm(? can argue that this time is not large

cmough  to indudc  reversil>le  solutions. Actually this time scale was introcluc.ed  by relaxing
the Lipditz conditi(m at tile equilibrium states (s(w Eq. 52). Simple expmimmts  which
allow one tc) find the constants defining this scale wt?re  alsc) dmc.rilxd,

The smond  property is linked to mother  fundamental, but still unsolvecl problem of

tlmnwtical physics - the problem of turbulence. FYom  a formal mathc?matic.al  viewpoint,
turbulc?me  results from dynamid  instability of the Navier-Stokcx  equations when the

Rcynolds  munbm exmwds  certain critical values, and it is descril~d  by stochastic. solutions.
But how can such s(dutions  occur from a fully deterministic mdel?  A physid explanation
is vmy simple: possible uncxwt aint ies and small em )rs (which always can be int(?rpretc?d  as

randcm  compon(?nts  of initial conditi(ms)  are amplified Ly the nmhmism  of instability,
and that leads to the stc)chasticity  of the solutions fcm supmcriticd  Reynolds numbers. In
other worcls,  turbulence is mused by a ran[l(ml input into the fully deterministic Navicr-

Stc)km  equations. Howmwr,  a llltttllc?l~~aticial~  can argue that, in principle, there is always

a possibility that there are no uncmtainties or errors in initial conditions at all, and then

the scduti(ms  will nevc?r l)(?c.c)mc  stochastic. Tile moclifkcl  v~?rsioll of the Navier-Stc)km
cquat ions at t aim a v(:ry fund amc?nt al n(?w IJxwlx?rty: it gent? rates stodlasticity  as a result
of the l]ol~-~llticl~lel~(?ss  of t hc? sc)]ut  ion which, in turn, follows  fr(nn rdaxat  ion of the Lipschit  z
condition at equilibrium states. In cases of dynamical instability the rand(un components

of the solution alx? amplifkd  al]cl that lt?ads t () stocl last ic. s(]luti  ( )ns simulating t urbulcmc.e.

Otherwise these rand(nn  mnnpou(?nts  decay and vanish.

It should b(? strmwd  that although the quditativc?  (Iifferellces  bdween  the. classical

and modifi(?d  Navior-  St~)lies  equat i(ms are fund mq(?nt  al, all the ncw effects emerge  within
vanishingly small Ileigllljorllc)c)cls  of equilil~rium  states which arc the only domains where

the mmlifi?d governing equations arf? diff(:rtmt  fronl classical. This means  that the formal

diffcmmms  between the soluti(ms  to classical and lllodified m(xl[?ls  may be not dc?tec.table

in domains which do not include equilihrimn  states.
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Figure 2

Limit case of stress-strain relationship for viscoplastic  body.
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APPENDIX

Thegovmning  equations of classical dynamics based upon the? Newtcm  laws:

where  L is the La,grangian, and q, (ji are the general zed coordinates and velocities, include
a dissipaticm functicm  lt( ii qj ) whidl  is associated with the friction fOX@S:

( 2 )

The structure c)f the func.tiom (2) does  not follow frcnn the Newton’s laws, and, strictly
speaking, some adclit imal assumptions should he made in ordt:r  to dcfme it. The ‘) nat ural”
assumption (which has been nmer  challengyxl)  is t}] at these fuuc.tions can be expandd  in
Taylor series with respect  to an equilibrium state

Obvicmsly  this requirm the existence of the dmivdives:

(3)

(4)

i.e.,  F’i must satisfy the Lipsc.hitz  condition. This ccmdi  tion ;illows  one tc) describe the
Newtonian dynamics  witl~in  the mathematical framework of c.lassie.al theory of diff~?rential
equations. However, there is a c.ert  ain pricx: paid for such a matlmnatiml  “ convmicmce>’:
the Newtonian dynamics with dissipat  ivc? forces m] nains full y rcwersihlc  in the scnsc that
its governing equations are invariant with respect to time inversion, t + —t. As stressed
by Prigogim,  I ., in this view future and past play the same role: nothing can appear  in
future whid could not dread  y exist in past since the trajcwt  oricx followed by partidm
can never cross  (unless i? ~ + m ). This mems that c.lassiml  dyllamic.s  cannot explain the
emergency of ncw d ynamic.d pat terns  in nature in the. same way in whid llc)ll-eclllilil~rilllll
tllcrxllc)clyllalllics  does.

In orckr to trivialize th[? Inathc?matic.al part  of our argumtmtaticm let us ccmsider an
c)lle-clilllcllsic)llal motion of a particle decelerated by a friction force:

1



ml) == F(v) (5)
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in which m is mass, and v is velocity. Invoking th(: assumption (4) one can linearize the
force F with rmpcw.t  to the equilibrium v == O:

ilF
F-+-cwat v+o, ck=-(——~v ).=0 >0 (6)

and the solution to (5) for v -+ O is:

As fcdlows  from (7), the equilibrium v = O c.w)not  bc approached in finite time. The
usual explanaticm  of such a paradox is that,, to accuracy of our lilni ted scale of observat  icm,
the particle  “actually” appr(mc.hes  the. c?quilihrium ill finite? tim(?. In other words, eventually
the trajcdmim  (7) and v = O lmcom? so C1OSC that wc cannot distinguish tlmn.  The same
type of explanation is used for the emergence of chaos: if two trzijec.tories  originally are
“very dose”, and then thc?y divmge t?xp(m({ntiall  y, tl) e samr illit id condi t ions Can be applied
to either of them, and thtmfmw,  the. motion mnm)t  be trtid.

Hcnce, there  are variety of phemm](?na  whcm explanati(ms  cannot be basecl directly
upon  the dassid  dymunics: in addition, t h(?y require s(nne “words’ ) about a scale of
obsmxmt  ion, ‘(viny d(wc”  trajt:ctories,  etc..

In this note we propose  a new structure of the. dissipati(m  forces which eliminates
the paradox disc.ussd  abow?  and makes  tllc: Nt?wtonian  dyn:inlim irreversible. The main
pmpcxtim  of the new strudum  are lmwd upon a vicdation  of the Lipschitz Condition  (4).
Turning to the exampk? (5), let us assume that

l-–-d, k=<]-<]
p-l 2

(8)

in whidl  p is an odd munlx?r.

By sdc?cting  largt? p, cme can make? k dose  to 1 SC) that Eqs. (6) and (8) will be almost
idcmtic.d  cwerywhc?re  excluding a small ll~?igllljc)rllc)ocl of the equilil~rium  point v = O, while,
as follows from (8), at this point:

~F-.— = –kcrvk-] +Cc)atv-+o
av

(9)

2
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Hence, tlm mnditicm (4) k violated, the friction force grows sharply at the equilibrium
point, ancl tlmn it gradually approaches the straight line (6). This Cffec.t can be interpreted
as a jump from static to kindic  friction.

It appears that this ‘(small” clifference  lx?tween  th(? friction f(mws (6) and (S) leads tc)
fundamental changm in Newtonian clynamics.

Firstly, the time of approaching the equilibrium v = O Iwcomes  finite. Inclcwcl, M
follc)ws from Eqs. (5) and (8):

!
o Indv ~,tt)l  – k

to==- –—- —“—

v. cd’ = CY(l:k)<m

Obvicmsly  this integral clivt?rges  in the classical case when k ~ 1.

%ccmdly,  the mc)ticm  clescrilmcl  by Eq. (8)

is irreversible since th(! tinm-backwarcl  mt)ti(m

~)_ ,,, {[v:–k - :(1 - q(-i)]’+”’}’l’

( lo )

(11)

(12)

is imaginary. (one cxm verify that the classical version of this mot i(m (7) is fully reversible
ift < m ) .

As shown by Zak, M. [2], the equililnium point v = O of Eq. (8) represents a tx?rminal
attractor which is ‘tinfinitdy>  stal~le ancl is intersected by all the attracted transimts, Fig.
2. Thcmfom,  the uniclucmms  of the solution at v = O is vi(ht(?cl,  tincl  the moticm for f < to
(see Eel. (10)) is totally ‘(fcmgotten”. (This is a miith(?matical  implicaticm  of irrcwmsibility
of the dynamics (8)).

So far we were.  cone.emecl with stal)ilizing  eff(ds of clissipatiw?  forces. However, as
wall-known frcm clynamic.s of llc)x~-c.(.)l~servzttive  systems, th~?se  forces can clcwtabilize  tlm
mot ion when they ft?ecl the external energy il~to the system (t h(: transmission of energy frcnn
laminar to turbulent flow in fluicl clynal;lics,  or fr(nn rotati(ms  to oscillations in clynamics
of flexible s yst ems). Ili orclm to capt ur(? the fullclall~ent  al l)rolmrt ies of these effects in case
of %rminal”  clissipative  force? (8) by using the simplest mtitllfmatic.al  moch?l,  let us turn
to Eel. (5) ancl assmnc tlmt n(nv the friction force feecls  energy  into th(? syst(?m:

3
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one can verify
repeller, ancl sinm

T)16=CWJ, k=-JLl (13)
])+2

that for Eq. (13) the, (equilibrium point v = O bemmes  a terminal

(1?.)—=k(yv~-l+matv+o
dv

it is “infinitely’ unst,alk, If the initial condition is infinitely
transient solution will escape it during a finite time peritd:

I

“0 dv ~l–k
to = –L. . < ~,

—i=&~E-+o v

(14)

dose to this repeller, the

(15)

while fcm a regular repc?llm,  the time would be illfilli te.

As in the case of a terminal attrador,  here tile motion is also irrew?rsible  since the
inversion of time in the solution to Eq. (14).

(16)

lcmcls  tc) imaginary valum of v.

But in addition to that, terminal repellers poss(?ss  even morc surprising characteristics: “
the solution (16) becomes tot ally unpreclict  aljle.  Indt?t?d,  t wo different moti(ms  desmilmd
by the solution (16) are p)ssible  for “ a l m o s t  the same)’  (V O = +6 + O, or VO = —E ~
O at t =+ O) initial mnditicnis. The mmt essent  id prop[?rt  y of this result is that the
divmgcmce  c)f these two solutions is Cllaractcrized  by an llllljotlll  [Icc] rat~:

(17)

In Contrast  tc) the dassid case where  to A co, here  o call he defined in an arbitrarily
small time interval t o, since dining this intmval the initial infinitesimal distance bet wem
tlm soluticm  becomes  finite. Thus, a terminal repeller repmmnts a vanishingly  short,
but infinitely powc?lful  “l~ulse  of lllll)rt?clict:il~ility” which is lJn]npd into the system via
terminal dissipative forces. obvicmsly  failure of the uniqueness of tile solution here results
from the viol&icm of the Lipsc.hitz  rendition (4) at v = O.

4



As ‘known from classical dynamics, the combination of stabilizing and destabilizing
effects  can led to a new phenomenon: chaos. 1 n order to descxibe  similar effeds  in
dynamics with t(?nnina.1  dissipative forces  let us slip,htly  modify Eq. (13):

7)16 = flvk ms d (18)

Here stabilization MIC1 destabilization c~ffects  alternate. With the initial ccmditicm
v --i O at t ~ O the exact sc)lution  to Eq. (18) consists of a reglllar  solution:

0(1 – k)
v ,= -+[ sinwt]l-~,  v + O;

7nu

and a singular solution:

(19)

I V=o ( 2 0 )

During the first period  O < t < 7r/2u tile equilibrium point (20) is a tt?rmind  re@lm.
Therefore, within this period, the motion Cm follow cme of t wt) pc)ssible  trajectories (19)
(eadl with the probability 1/2) whidl  diverge  with unbounded rate (17) at v = O. During
the next period  7r/2u < t < 3T/2u  the equilibrium point (20) Ix?cmnes a tc?rminal  attractor;
the scduticm  approadms  it at t = mw and it remains moticmless  until -1> 3r/2w.  After that
the tcvminal attrador  conw?rts into tx?rminal repdler , and tlm solution escapes again,  etc.

It is important tc) nf)tic.e that each time the system escalx?s  the terminal N?pdler,  the
solution splits into twc) synmmtric  branches , so that them is 2’1 pcwsihle  scemarios  of the.
oscillations with respect  to the renter v = O, while each scenario has the probability 2–”
(n is tlm number of cycles). Hence,  the motion (19) resemblm  chaotic oscillations known
from classical clynamics: it combines ranchnn  charactt?rist  im wit] 1 the attraction to a center.
Howmm,  in dassic.al case the chaos is caused  by a sl~persensitivity  to the initial ccmditions,
while the uniqueness of the solution f(m fixt:d  inititil mnditi(ms is guarantmcl.  In ccmtrast
to that, the chaos in the (xc.illations  (19) is c.austd  ljy tilt? failure of the uniclueness  of
the scdution at the ecplililwium  points, and it has a well (mganizecl  prc)baljilistic  structure.
Sinm tlw time of approaching the t?quiliblium point v = O by the scdution (19) is finite,

this type c)f chaos can be died tt?rminal.
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